242 research outputs found

    The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM

    Full text link
    By confronting the two independent Boltzmann codes CLASS and CAMB, we establish that for concordance cosmology and for a given recombination history, lensed CMB and matter power spectra can be computed by current codes with an accuracy of 0.01%. We list a few tiny changes in CAMB which are necessary in order to reach such a level. Using the common limit of the two codes as a set of reference spectra, we derive precision settings corresponding to fixed levels of error in the computation of a CMB likelihood. We find that for a given precision level, CLASS is about 2.5 times faster than CAMB for computing the lensed CMB spectra of a LambdaCDM model. The nature of the main improvements in CLASS (which may each contribute to these performances) is discussed in companion papers.Comment: 16 pages, 4 figures, 1 table. Typos corrected, comparison extended to lower precision settings. Code available at http://class-code.ne

    TASI Lectures on Cosmological Perturbations

    Full text link
    We present a self-contained summary of the theory of linear cosmological perturbations. We emphasize the effect of the six parameters of the minimal cosmological model, first, on the spectrum of Cosmic Microwave Background temperature anisotropies, and second, on the linear matter power spectrum. We briefly review at the end the possible impact of a few non-minimal dark matter and dark energy models.Comment: TASI 2013 lecture note

    The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview

    Full text link
    The Cosmic Linear Anisotropy Solving System (CLASS) is a new accurate Boltzmann code, designed to offer a more user-friendly and flexible coding environment to cosmologists. CLASS is very structured, easy to modify, and offers a rigorous way to control the accuracy of output quantities. It is also incidentally a bit faster than other codes. In this overview, we present the general principles of CLASS and its basic structure. We insist on the friendliness and flexibility aspects, while accuracy, physical approximations and performances are discussed in a series of companion papers.Comment: 19 pages, typos corrected. Code available at http://class-code.ne

    Optimal polarisation equations in FLRW universes

    Get PDF
    This paper presents the linearised Boltzmann equation for photons for scalar, vector and tensor perturbations in flat, open and closed FLRW cosmologies. We show that E- and B-mode polarisation for all types can be computed using only a single hierarchy. This was previously shown explicitly for tensor modes in flat cosmologies but not for vectors, and not for non-flat cosmologies.Comment: 27 pages, prepared for submission to JCAP. Matches published versio

    Massive neutrinos and cosmology

    Get PDF
    The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of cosmological data, including the most recent analysis by the WMAP team. We also discuss how future cosmological experiments are expected to be sensitive to neutrino masses well into the sub-eV range.Comment: 122 pages, 23 figures, misprints corrected and references added. Review article to be published in Physics Report

    Dark goo: Bulk viscosity as an alternative to dark energy

    Full text link
    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an "effective" pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local equilibrium today for viscous effects to be important.Comment: 21 pages, 14 figures. References added, typos corrected, figure 2 corrected, a few comments added, results unchange

    How to constrain inflationary parameter space with minimal priors

    Full text link
    We update constraints on the Hubble function H(phi) during inflation, using the most recent cosmic microwave background (CMB) and large scale structure (LSS) data. Our main focus is on a comparison between various commonly used methods of calculating the primordial power spectrum via analytical approximations and the results obtained by integrating the exact equations numerically. In each case, we impose naive, minimally restrictive priors on the duration of inflation. We find that the choice of priors has an impact on the results: the bounds on inflationary parameters can vary by up to a factor two. Nevertheless, it should be noted that within the region allowed by the minimal prior of the exact method, the accuracy of the approximations is sufficient for current data. We caution however that a careless minimal implementation of the approximative methods allows models for which the assumptions behind the analytical approximations fail, and recommend using the exact numerical method for a self-consistent analysis of cosmological data.Comment: 16 pages, 3 figure
    • …
    corecore